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ABSTRACT 

A deterministic mathematical model for cancer cells dynamics in the presence  of treatment is 

considered.  The model is a system of coupled ordinary differential equations (ODEs) which 

describes cancer growth on a cell population level in the presence of a combination of 

immunotherapy and chemotherapy known as biochemotherapy.   The modeled scenario is 

formulated as an optimal control problem  with the goal  of obtaining  the optimal levels of each  of 

the treatment  regimen  that must be adopted  in order to minimize  the number of a cancer cells  as 

well as the  therapy  toxicity while maximizing the immune system performance. The optimality 

system for the optimal control problem is derived based on Pontryagin’s Maximum Principle and 

the resulting system is solved numerically with fourth order Runge-Kunta  scheme using forward-

backward sweep approach.  Simulations of the numerical solution were carried out and findings 

from the simulations show that biochemotherapy could effectively curtail the growth of the cancer 

cells remarkably within a reasonable short time.  

Keywords: Cancer cells, Biochemotherapy,  Immune system, Pontryagin’s Maximum Principle, 

Optimality system. 

 

Introduction 

Cancer is a major cause of death worldwide. It often results from the uncontrolled growth of 

abnormal cells in the body. Cells are the body’s building blocks, and cancer starts from the normal 

cells which divide to grow in order to maintain cell population equilibrium while balancing cell 

death. However, cancer occurs when the unbounded growth of cells in the body happens too fast. 

Moreover, it can also occur when cells lose their ability to die [1]. There are different kinds of 
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cancer depending on which organ or tissue of the body is affected. Cancer affects organs or tissues 

such as the lung, colon/rectum, breast, skin, bones and nerves in the body. The common feature to 

all forms of the cancer disease is the failure of the mechanisms that regulate normal cell growth, 

proliferation and cell death. Ultimately, there is progression of the resulting cancer cells from mild 

to severe abnormality with invasion of neighboring tissues and this eventually spread to other areas 

of the body. This process is referred to as Metastasis and it is a major cause of death from cancer. 

 

Generally, cancer disease develops due to exposure of individuals to carcinogenic (cancer-causing) 

agents in what they inhale, eat, or drink. It may also arise as a result of DNA damages caused by 

certain environmental exposures. In addition, individuals infected with diseases like hepatitis B 

virus  and human papillomavirus may also develop cancer at the  severe stage of these diseases.  It 

is important to emphasize here that the immune system plays a major role in limiting the 

development of cancerous cells. Particularly, the natural killer cells and CD8+ killer T-cells help to 

directly attack and eliminate infected cells. 

 

Cancer can be treated by chemotherapy, immunotherapy, radiation therapy, surgery, monoclonal 

antibody therapy, etc. The most recent therapy approach is aimed at combining immunotherapy and 

chemotherapy as a means of treating cancer. Chemotherapy is the treatment of cancer with one or 

more cytotoxic antineoplastic drug (chemotherapeutic agents) as part of standard regimens. Most 

forms of chemotherapy drugs act by killing cells that divide rapidly. On the other hand, the goal of 

immunotherapy is to strengthen the body’s own natural ability to combat cancer by enhancing the 

effectiveness of the immune system. Immunotherapy alone is sometimes used to treat cancer, but it 

is often used in combination with common treatments like chemotherapy and radiation therapy.  

This is done in order to enhance the effectiveness of the combined therapy. One of the possible 

benefits of immunotherapy is that it has the potential not to be as toxic as chemotherapy, radiation 

therapy and surgery. The logic behind the development of a biochemotherapy is based on using as 

little drug as possible to effectively kill cancer cells and applying immunotherapy to support the 

patient’s immune system. This strengthens the body’s natural defenses against both the cancer cells 

and dangerous side effects of chemotherapy. Consequently, there have been series of research 

works on modeling the cancer  and immune cells dynamics in  the presence of therapy (See,  [5, 9, 

12, 18] ). 

 

Obviously, theoretical study of cancer through mathematical modeling is a very useful approach 

which could help better understand the dynamics of the cancer-immune cells interaction. Moreover, 
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optimal control theory can provide a guide on how to effectively combine the different cancer 

therapy options  in a  way that will  yield improved treatment outcome for patients [2, 6, 8, 19, 21, 

23].  For instance,  Kuznetsov and knott [16]  developed a deterministic model that describes the 

interplay of the cancer cells and the cytotoxic killer cells. Though, they considered only one 

immune cells population, they effectively discussed  the mechanism of cancer growth, suppression 

and re-growth. In a related study, Kuznetsov and Taylor [15] presented a mathematical model for 

cytotoxic T lymphocytes response to the growth of an immunogenic cancer.  Similarly, Kirschner 

and Panetta [13] proposed a different model which focuses on the cancer-immune cells interaction. 

They found  that the dynamics among cancer cells, immune cells and the cytokine interleukin-2 can 

explain both short-term oscillations in cancer size as well as long-term cancer relapse. Also, Kolev 

[14] presented a mathematical model showing the competition between cancer cells and immune 

cells with emphasis  on the roles of antibodies. De Pillis et al. [4] presented a model on cancer cells 

dynamics under the influence of  immunotherapy and chemotherapy. Their simulation results show 

that neither chemotherapy nor immunotherapy alone was sufficient to control cancer growth while 

the combination of the two therapy approach could help eliminate the entire cancer cells.  

 

In this paper, we consider the dynamics of cancer-immune cells the influence of biochemotherapy. 

Here, we explore the interactions of cancer cells and immune cells incorporating the effect of the 

therapy on the cells dynamics using a system of non-linear differential equations. We set up the 

scenario as an optimal control problem with the goal of minimizing the cancer cells population as 

well as adverse effect of therapy at the end of the treatment. Thus, the paper is structured as 

follows: In section 2, we discuss our proposed model with the controls. In section 3, we formulate 

an optimal control problem subject to the model dynamics, characterize the optimal controls, and 

constitute its optimality system using PMP. In section 4, we solve the resulting system numerically 

and discuss our results. 

 

 

 

Proposed  Mathematical Model 

We proposed a deterministic model of three different cells’ populations and   two different drugs 

concentrations dynamics. They are cancer cells population (T(t)), natural killer cells (N(t)), 

CD8+Tcells (L(t)), concentration of Interleukin-2 (I(t)) and concentration of interferon- α (F(t)). 

The model is a system of coupled ordinary differential equations expressed below: 
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with initial conditions .0)0(,0)0(,0)0(,0)0(,0)0( ≥≥≥≥≥ FandILNT  

The cancerous cells growth is assumed to be logistic, since no living thing continues to grow 

indefinitely rather there is a stagnation/retardation on growth at the later stage of their life. Thus, 

this is captured by the term )1( bTaT −  where a represents the cancer growth rate, b is the human 

cancer cell’s carrying capacity, c is a rate constant which denotes the rate at which cancerous cells 

are killed by natural killer cell, the third term represent the inactivation term for the cancerous cells 

due to the interaction between CD8+ T- cell and cancer cell at rate c′ , while the interferon-α ( F ) 

also boosts the ability of immune cells to attack cancer cell and slow the growth of cancer cell 

directly as well as the blood vessel that the cancer cell need to grow. 2u  represents the toxicity of 

the therapy which implies the adverse effect of the therapy on each of the cells. Td denotes the 

natural death rate of the cancer cells. However, since our model considers the dynamics of a cancer 

cell, setting  01 ≡u and 12 ≡u  in the above equation simplifies the model to a scenario without 

effective therapy. This implies that 01 =u  means the therapy has no effect on the cancer growth and 

12 =u means that the therapy has no toxic effect on each of the cells under consideration. The 

structure of the equations guarantees non-negative solution for the state variables T(t), N(t),L(t), 

I(t), F(t).The negative terms in the above equations represent loses from the cell populations while 

the positive terms constitute increase in the cell populations. The other model equations (2-5) can 

be explained in a similar way. 

 

Optimal Control Problem Formulation 

We formulated the goal of the biochemotherapy  administered on  a cancer patient as an optimal 

control problem. We denote the positive effect of the therapy as the control variable u1(t) and its 

adverse effect as control variable u2(t) while the problem objective functional is defined as  
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 subject to the state equations(1-5) with appropriate state initial conditions over the initial time 0t  

up to time the terminal time ft The control set U whose elements are Lebesgue measurable is 

defined as: 

{ }],[,2,1,)(|))(),(( 021 fiii tttiMtumtutuU ∈=≤≤=    (7) 

the objective functional, our goal is to minimize the total cancer cells population and toxicity of the 

therapy over the time interval ],[ 0 ftt   and also to ensure that cancerous cells remained minimal at 

the terminal time ft . It is expected that effects of the drugs are non-linear, and we choose quadratic 

cost terms 2
1u  and 2

2u  to reflect the effectiveness of the therapy and its side-effects respectively. The 

coefficient 1w and 2w  are weight constants on the controls and each of them is the relative 

importance of each of the control term on the therapy outcome. It is worthy to note that the higher 

the weight constants  associated with each  of the control, the more will be its impact on the model 

system dynamics. The salvage term  )(3 ftTw  is included to counter the effect of using fixed 

treatment time. If this term is not present, the controls could taper off earlier, and allow a rise in 

cancer cell count at the end of the treatment period.  

The lower bounds for 1u  and 2u   correspond to no therapy. For  1u ,  this lower bound is 01 =m and 

for 2u  the lower bound is 12 =m . We restrict 11 <M , as 11 =M  would correspond to no new 

cancer cell. The upper bound 2M  is greater than 1 and its impact is indirectly dependent on each of 

the parameter values ,Td ,Nd  and ,Ld  which are the associated death rates for each of the cell 

populations considered. 

 

Existence of an Optimal Control Pair 

We shall consider the sufficient conditions for the existence of a solution to our formulated optimal 

control problem. This will be accomplished using theorem that follows: 

 

Theorem 1:  

 There exists an optimal control pair ),( 21
∗∗ uu  with a corresponding solution  

),,,,( ∗∗∗∗∗ FILNT  to the model equations 1-5 that minimizes J(u1, u2) over U 
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Proof: 

The existence of the optimal control pair  ),( 21
∗∗ uu  is guaranteed   by the compactness of the control 

and state space, and convexity of the objective functional  which is based on the Fleming and 

Rishel’s theorem [10].  The non-trivial requirement of the theorem are as stated below: 

 (1) The set of all solutions to the model equations (1-5) and its associated initial conditions 

together with the corresponding controls in U is non-empty. 

 (2) The state system can be written as a linear function of the control variables with coefficients 

dependent on time and state variables. 

(3) The integrand G in Equation (6) is convex on U and additionally satisfies 

G(t, T, N, L, I, F, u1, u2) ≥ r1|(u1, u2, u3)|β – r2, where r1, r2 > 0 and β > 1. 

Using the approach adopted in Yusuf and Benyah [24], if the solutions  

to the state equations are a priori bounded and the state equations are continuous and Lipschitz in 

the state variables, then there exists a unique solution corresponding to every admissible control set 

in U.  Equally, based on the fact that for all (T, N, L, I, T) ∈ 5
+ℜ , all the model state variables are 

bounded below and above,  hence the solutions to the state equations are bounded. In addition, the 

boundedness of the partial derivatives with respect to the state variables in the model system of 

equations can be shown directly. This shows that the model system of equations is Lipschitz with 

respect to the state variables. Consequently, the first requirement   of the  theorem is satisfied. 

 

Moreover,  considering the model system of equations (1-5), it is obvious that the state variables 

equations are linearly dependent on the controls u1and u2. Thus, the second requirement of the 

theorem  is satisfied too.  

As for the third requirement of the theorem, we observe that the integrand G in our objective 

functional is convex because it is quadratic with respect to the controls. Thus, we only need to 

prove that G is bounded. This is proved below: 
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The above equation (8) establishes a bound on G. Therefore, we have a unique solution of the 

optimality system for small intervals due to the opposite time orientation of the state variables and 

the adjoint-variables equations. Furthermore, the uniqueness of the solution of the optimality 

system guarantees the uniqueness of the optimal control if it exists.   

 

Characterization of the Optimal Control Pair 

We characterize the optimal control ∗
1u and ∗

2u  which gives the optimal levels for the two control 

variables and the corresponding states ),,,,( ∗∗∗∗∗ FILNT . The necessary conditions for the 

optimal controls are obtained using the Pontryagin’s Maximum Principle [20]. 

In order to apply the Pontryagin’s Maximum Principle, we need to first defined the Hamiltonian as 

follows: 
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Theorem 2 Let Uuu ∈∗∗ ),( 21  be an optimal control with the corresponding states 
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and the transversality conditions 
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Proof: 

Based  on Pontryagin’s Maximum principle (PMP), we obtained  the adjoint variables equations 

(10-15) as follows: 
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Moreover, the transversality condition of the PMB gives the terminal condition for each of the 

adjoint variables as stated in equation (16) while the imposition of its optimality conditions  gives : 
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Similarly, 
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We can then characterize the optimal control pair ),( 21
∗∗ uu  by imposing the bounds on the control 

variables given in equation (7) to obtain the optimal levels of  the two  controls as follows: 
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Consequently, the modeled problem optimality system is obtained   by substituting  ∗
1u  and ∗

2u   for 

1u  and 2u   respectively in the model state variables equations (1-5) with the associated initial 

conditions and  the adjoint variables equations (10-14) with transversality conditions coupled with 

the control variables characterization  given  in equations (14). 

 

Numerical Simulations 

In this section, numerical simulations of the modeled problem is presented. The optimality system 

is solved numerically based on Runge-Kunta forth order scheme using forward-backward sweep 

approach and the results are presented graphically. This is done using the set of parameters values 

in Table 1 and solving  the model state equations forward in time  with an initial guess for the 

control variables and initial values for each of the state variables. The results are then used  to solve 

the co-state equations backward in time with the derived  terminal conditions on each of the co-

state variables.  This procedure is done iteratively until successive values of each of the variables 

converge. 

Table 1 Estimation of population values and parameter 

Parameter Description Unit Value Source 

a Tumor growth rate day-1 1.25 Estimate 

 Tumor death rate day-1 0.8 [22] 

 NK death rate day-1 0.6 [22] 

 CD8+ T cell death rate day-1 0.6 [22] 

b Tumor carrying capacity cell-1 
 [17] 
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c Fractional tumor cell kill by 

effector cells 

day-1 .cell-1  [17] 

 Recruitment rate cell. day-1  [17] 

g Maximum NK cell recruitment 

rate by tumor cell 

day-1  [17] 

h1 Steepness coefficient of the NK 

cells recruitment curve 

day-1  [16] 

ρ NK cells inactivation rate by 

tumor cells 

day-1 .cell-1  [7] 

ki Steepness coefficient of the 

CD8+ T cells recruitment curve 

cell2 
 [7] 

r Self-regulation rate is the rate at 

which CD8+ T cells stimulated 

to be produced as a result of 

tumor cells killed by NK cells 

day-1 .cell-1  [4] 

q CD8+ T cell inactivation by 

tumor cell 

day-1 .cell-1  [16] 

 Decay rate day-1 1.7 [11] 

u Regulatory function by NK cells 

of CD8+ T cell 

day-1 .cell-1 3.00 Estimate 

 Maximum CD8+ T cell 

recruitment rate by IL-2 

day-1  [3] 

 Constant cell2 2.00 [3] 

 Constant source of NK cell (cells.day)-1  [17] 

 Constant source of CD8+ T- cell (cells.day)-1  [17] 

 Rate consumption IL-2 by CD8+ 

T- cell 

day-1 10 [3] 

D Steepness coefficient of tumor- 

CD8+ T cells) lysis. Primed with 

ligand-transduced cells  

dimensionless  [17] 

 Initial interferon day-1 1000 Estimate 

C1 Rate of tumor cells inactivation 

by CD8+ T- cell 

(cells.day)-1  Estimate 
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 Inactivation of IL-2 molecules 

by prostaglandins 

(cells.day)-1  Estimate 
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Figure 1: Cancer cells’ population over time in the absence of biochemotherapy. 
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Figure 2: Cancer cells’ population over time  in the presence of biochemothrapy. 

 

 

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time (days)

Ca
nc

er 
ce

lls
 (T

)

 

 
u1max=0.8, u2max=1.8

u1max=0.3, u2max=1.8

u1max=0.8, u2max=1.3

u1max=0.5, u2max=1.5

 
Figure 3: Cancer cells’ population over time with varying combinations effectiveness and toxicity 

of the  biochemotherapy. 
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Figures 1-3 above shows the dynamics of cancer cells’ population  with or without 

biochemotherapy. Figure 1 conveys that the cancer cells’ population continues to increase rapidly 

in the absence of biochemotherapy while  Figure  2 indicates that the same population decreases 

remarkably under biochemotherapy.  However, Figure 3 shows that the more effective the 

biochemotherapy is , the more  drastic will be the decrease in cancer cells’ population although the 

therapy may have some  side-effects on some other body cells. 
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Figure 4: CD8+ T-cells’ population over time with and without biochemotherapy  

 

In Figure 4, it is observed that the CD8+ T-cells’ population is not significantly different from one 

another whether with or without biochemotherapy, though  the population is slightly higher in the 

case with biochemotherapy. This difference  could be attributed to the production of more CD8+ T-

cells due to the therapy and this  might be responsible for the sharp drop in the cancer cells’ 

population in the presence of the therapy. 
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Figure 5:  Natural killer cells’ population over time  with and without biochemotherapy. 
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Figure 6: IL-2 population over time  with and without biochemotherapy. 
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Figure 7: Interferon- alpha population over time with and without biochemotherapy 

 

Figure 5 shows that the Natural killer cells’ population grows to its carrying capacity and remains at 

that level over time in the presence biochemotherapy while in the case without therapy, the natural 

cells’ population rises initially (though it does not get to the  carrying capacity) but drop sharply 

afterwards. The sudden drop in the natural cells’ population could result from substantial loss in 

cells’ population arising from the inability of the natural killers to halt the proliferation of the 

cancer cells. Unlike in the case with biochemotherapy where the natural killer cells are 

continuously strengthened to control the growth of cancer cells. 

Figure 6 and Figure 7  shows that IL-2  and interferon-alpha population  profile are not significantly 

different in the presence or absence of biochemotherapy. It is important to mention here that the 

therapy may not make a difference in these two populations,  they a play big role in the presence of 

biochemotherapy to ensure a consistent reduction of the cancer cells and enhance the performance 

of the immune cells. 

 

Conclusion 

In this paper, a  model for  the dynamics of the cancer cells and immune  cells population in the 

presence of biochemotherapy was considered. The modelled scenarios was formulated as an 
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optimal control problem. The optimality system to the problem was derived using Pontryagins’ 

maximum principle.  The resulting optimality system was solved numerically using Runge-Kunta 

forth order scheme based on forward-backward sweep approach.   Simulations of the numerical 

results  indicated  that biochemotherapy  yielded drastic reduction in the  cancer cells’ population  

and it also remarkably enhanced the CD8+ T-cells and  natural killer cells population. Thus, 

resulting in improved therapy outcome for patients undergoing biochemotherapy. 
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